Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2864907.v1

ABSTRACT

Thrombotic thrombocytopenic purpura (TTP) and atypical hemolytic uremic syndrome (aHUS) are both thrombotic microangiopathies that share several clinical traits including microangiopathic hemolytic anemia, thrombocytopenia, and organic damage. There is inherent opportunity for misdiagnosis. As thrombocytopenia and thrombus are strongly related to COVID-19, it may be more difficult to tell an aHUS from a TTP when COVID-19 is present. Thus, we describe a patient presenting with severe COVID-19 who was misdiagnosed with TTP but in the end corrected to aHUS. We suggest that perform detection to ADAMTS-13 activity and complement gene mutation as soon as possible is necessary.


Subject(s)
Anemia, Hemolytic , Thrombocytopenia , Atypical Hemolytic Uremic Syndrome , Thrombotic Microangiopathies , Neurocognitive Disorders , Thrombosis , Hemolytic-Uremic Syndrome , COVID-19 , Purpura, Thrombotic Thrombocytopenic
4.
Front Immunol ; 13: 1056153, 2022.
Article in English | MEDLINE | ID: covidwho-2198898

ABSTRACT

Introduction: COVID-19 vaccination has been associated with rare but severe complications characterized by thrombosis and thrombocytopenia. Methods and Results: Here we present three patients who developed de novo or relapse atypical hemolytic uremic syndrome (aHUS) in native kidneys, a median of 3 days (range 2-15) after mRNA-based (Pfizer/BioNTech's, BNT162b2) or adenoviral (AstraZeneca, ChAdOx1 nCoV-19) COVID-19 vaccination. All three patients presented with evident hematological signs of TMA and AKI, and other aHUS triggering or explanatory events were absent. After eculizumab treatment, kidney function fully recovered in 2/3 patients. In addition, we describe two patients with dubious aHUS relapse after COVID-19 vaccination. To assess the risks of vaccination, we retrospectively evaluated 29 aHUS patients (n=8 with native kidneys) without complement-inhibitory treatment, who received a total of 73 COVID-19 vaccinations. None developed aHUS relapse after vaccination. Conclusion: In conclusion, aHUS should be included in the differential diagnosis of patients with vaccine-induced thrombocytopenia, especially if co-occuring with mechanical hemolytic anemia (MAHA) and acute kidney injury (AKI). Still, the overall risk is limited and we clearly advise continuation of COVID-19 vaccination in patients with a previous episode of aHUS, yet conditional upon clear patient instruction on how to recognize symptoms of recurrence. At last, we suggest monitoring serum creatinine (sCr), proteinuria, MAHA parameters, and blood pressure days after vaccination.


Subject(s)
Acute Kidney Injury , Anemia, Hemolytic , Atypical Hemolytic Uremic Syndrome , COVID-19 Vaccines , COVID-19 , Humans , Acute Kidney Injury/chemically induced , Atypical Hemolytic Uremic Syndrome/etiology , Atypical Hemolytic Uremic Syndrome/therapy , BNT162 Vaccine , ChAdOx1 nCoV-19 , COVID-19/prevention & control , COVID-19/complications , COVID-19 Vaccines/adverse effects , Recurrence , Retrospective Studies , Vaccination/adverse effects
5.
Front Immunol ; 13: 931210, 2022.
Article in English | MEDLINE | ID: covidwho-2065505

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) an important form of a thrombotic microangiopathy (TMA) that can frequently lead to acute kidney injury (AKI). An important subset of aHUS is the anti-factor H associated aHUS. This variant of aHUS can occur due to deletion of the complement factor H genes, CFHR1 and CFHR3, along with the presence of anti-factor H antibodies. However, it is a point of interest to note that not all patients with anti-factor H associated aHUS have a CFHR1/R3 deletion. Factor-H has a vital role in the regulation of the complement system, specifically the alternate pathway. Therefore, dysregulation of the complement system can lead to inflammatory or autoimmune diseases. Patients with this disease respond well to treatment with plasma exchange therapy along with Eculizumab and immunosuppressant therapy. Anti-factor H antibody associated aHUS has a certain genetic predilection therefore there is focus on further advancements in the diagnosis and management of this disease. In this article we discuss the baseline characteristics of patients with anti-factor H associated aHUS, their triggers, various treatment modalities and future perspectives.


Subject(s)
Acute Kidney Injury , Atypical Hemolytic Uremic Syndrome , Complement System Proteins , Acute Kidney Injury/genetics , Acute Kidney Injury/immunology , Acute Kidney Injury/therapy , Antibodies/genetics , Antibodies/immunology , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/therapy , Blood Proteins/genetics , Complement C3b Inactivator Proteins/genetics , Complement Factor H/antagonists & inhibitors , Complement Factor H/genetics , Complement Factor H/immunology , Complement System Proteins/genetics , Complement System Proteins/immunology , Humans , Plasma Exchange
6.
Int J Mol Sci ; 23(19)2022 Sep 25.
Article in English | MEDLINE | ID: covidwho-2043777

ABSTRACT

Coronavirus disease 2019 (COVID-19) can lead to clinically significant multisystem disorders that also affect the kidney. According to recent data, renal injury in the form of thrombotic microangiopathy (TMA) in native kidneys ranks third in frequency. Our review of global literature revealed 46 cases of TMA in association with COVID-19. Among identified cases, 18 patients presented as thrombotic thrombocytopenic purpura (TTP) and 28 cases presented as atypical hemolytic uremic syndrome (aHUS). Altogether, seven patients with aHUS had previously proven pathogenic or likely pathogenic genetic complement abnormalities. TMA occurred at the time of viremia or even after viral clearance. Infection with COVID-19 resulted in almost no or only mild respiratory symptoms in the majority of patients, while digestive symptoms occurred in almost one-third of patients. Regarding the clinical presentation of COVID-19-associated TMA, the cases showed no major deviations from the known presentation. Patients with TTP were treated with plasma exchange (88.9%) or fresh frozen plasma (11.1%), corticosteroids (88.9%), rituximab (38.9%), and caplacizumab (11.1%). Furthermore, 53.6% of patients with aHUS underwent plasma exchange with or without steroid as initial therapy, and 57.1% of patients received a C5 complement inhibitor. Mortality in the studied cohort was 16.7% for patients with TTP and 10.7% for patients with aHUS. The exact role of COVID-19 in the setting of COVID-19-associated TMA remains unclear. COVID-19 likely represents a second hit of aHUS or TTP that manifests in genetically predisposed individuals. Early identification of the TMA subtype and appropriate prompt and specific treatment could lead to good outcomes comparable to survival and recovery statistics for TMA of all causes.


Subject(s)
Atypical Hemolytic Uremic Syndrome , COVID-19 , Purpura, Thrombotic Thrombocytopenic , Thrombotic Microangiopathies , Atypical Hemolytic Uremic Syndrome/etiology , COVID-19/complications , Complement Inactivating Agents , Humans , Purpura, Thrombotic Thrombocytopenic/diagnosis , Purpura, Thrombotic Thrombocytopenic/therapy , Rituximab , Steroids , Thiamine , Thrombotic Microangiopathies/diagnosis , Thrombotic Microangiopathies/etiology
7.
Int J Environ Res Public Health ; 19(18)2022 Sep 11.
Article in English | MEDLINE | ID: covidwho-2032943

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is a life-threatening disease causing systemic thrombotic microangiopathy (TMA) due to the fact of complement dysregulation. Immune activation by viruses, including SARS-CoV-2, can lead to the development of an episode of aHUS against a background of genetic dysregulation in the complement pathway. This paper presents an analysis of two cases of aHUS-siblings diagnosed with familial disease, with a genetic predisposition to aHUS, in whom infection with SARS-CoV-2 was a strong trigger of disease recurrence. The quick recognition and treatment with eculizumab in the early stage of the disease resulted in a rapid improvement in clinical conditions and laboratory parameters.


Subject(s)
Atypical Hemolytic Uremic Syndrome , COVID-19 , COVID-19/complications , Humans , Recurrence , SARS-CoV-2
8.
Pediatr Nephrol ; 37(11): 2781-2784, 2022 11.
Article in English | MEDLINE | ID: covidwho-1941662

ABSTRACT

BACKGROUND: Atypical hemolytic uremic syndrome (aHUS) is a rare disease characterized by systemic thrombotic microangiopathy mainly in the kidneys and mostly due to genetic disorders leading to uncontrolled activation of the complement system. Severe complications of SARS-CoV2 infection are linked to microvascular injury and complement activation is suspected to play a role in the pathogenesis of endothelial cell damage in severe COVID-19. METHODS: We present the first two cases of aHUS triggered by SARS-CoV-2 infection in two unrelated infants with the same mutation in the RNA exosome gene EXOSC3. This mutation is known to cause pontocerebellar hypoplasia type 1b, an autosomal-recessive neurodegenerative disease. So far, no kidney involvement in affected persons was reported. RESULTS: As eculizumab treatment was unsuccessful and complement-mediated disorders were ruled out, we suppose that the atypical HUS in our two patients is not due to complement-mediated thrombotic microangiopathy but rather due to a dysfunction of the RNA exosome. CONCLUSIONS: The RNA exosome is crucial for the precise processing and degradation of nuclear and cytoplasmatic RNA. We suspect that the SARS-CoV-2 infection led to changes in RNA that could not be offset by the defective RNA exosome in our two patients. The accumulation/wrong processing of the viral RNA must have led to the endothelial cell damage resulting in aHUS. This would be a new - "RNA-induced" - mechanism of aHUS.


Subject(s)
Atypical Hemolytic Uremic Syndrome , COVID-19 , Neurodegenerative Diseases , Thrombotic Microangiopathies , Atypical Hemolytic Uremic Syndrome/therapy , COVID-19/complications , Complement System Proteins , Exosome Multienzyme Ribonuclease Complex/genetics , Humans , Infant , Mutation , Neurodegenerative Diseases/complications , RNA, Viral , RNA-Binding Proteins/genetics , SARS-CoV-2 , Thrombotic Microangiopathies/complications , Thrombotic Microangiopathies/genetics
9.
Rinsho Ketsueki ; 63(3): 224-228, 2022.
Article in Japanese | MEDLINE | ID: covidwho-1780264

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is a lethal disease resulting in systemic thrombotic microangiopathies due to complement dysregulation. Immune activation by viral infections, such as SARS-CoV-2, may trigger hemolytic attack. A 38-year-old man, who had been previously diagnosed with aHUS due to complement component 3 mutation, was proven to be positive for SARS-CoV-2 without respiratory symptoms. No specific intervention was given to the patient, and he developed hematuria and oliguria three days after diagnosis. The patient was subsequently referred to our hospital and treated with eculizumab (900 mg). Afterward, the hemolytic symptoms improved rapidly. To the best of our knowledge, there have been reports of at least ten cases of hemolysis triggered by COVID-19 in patients with aHUS, and a potential clinical benefit of eculizumab for hemolytic attack, as well as for COVID-19, has been suggested. Here, we report the findings of a case, which indicate the efficacy of eculizumab introduction at an early stage.


Subject(s)
Atypical Hemolytic Uremic Syndrome , COVID-19 , Thrombotic Microangiopathies , Adult , Atypical Hemolytic Uremic Syndrome/diagnosis , COVID-19/complications , Hemolysis , Humans , Male , SARS-CoV-2 , Thrombotic Microangiopathies/diagnosis
10.
Pediatr Nephrol ; 37(9): 2151-2156, 2022 09.
Article in English | MEDLINE | ID: covidwho-1653488

ABSTRACT

BACKGROUND: The pathogenesis of autoantibody generation in anti-factor H (FH) antibody associated atypical hemolytic uremic syndrome (aHUS) is unknown and is perhaps triggered by an infectious or environmental agent. We observed an unusual increase of patients with anti-FH antibody associated aHUS coinciding with the second pandemic wave in New Delhi and suspected that SARS-CoV-2 infection might be a potential trigger. METHODS: We screened for SARS-CoV-2 infection using reverse transcriptase polymerase chain reaction (RT-PCR) and serology in 13 consecutive patients with anti-FH antibody associated aHUS during the past year in New Delhi. RESULTS: We report 5 patients, 4-13 years old, who presented with a febrile illness without respiratory symptoms during the second pandemic wave. Of these, 3 patients presented with a relapse 25-85 months following the initial episode of aHUS. SARS-CoV-2 was detected by RT-PCR in 1 patient and by serology in 4 patients (median titer 47.1 cut-off index). Patients had high titers of anti-FH antibodies (median 2,300 AU/ml). Genetic studies, done in 3 of the 5 patients, showed homozygous CFHR1 deletion without other significant genetic abnormalities. Specific management comprised plasma exchanges and oral prednisolone, combined with either cyclophosphamide or mycophenolate mofetil. At median follow-up of 3.3 months, the estimated glomerular filtration rate in 4 patients ranged from 62 to 110 ml/min/1.73 m2; one patient was dialysis-dependent. CONCLUSION: Increased vigilance is required during the pandemic, especially in patients with anti-FH associated aHUS, who might relapse despite quiescent disease for a prolonged period. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Atypical Hemolytic Uremic Syndrome , COVID-19 , Adolescent , Atypical Hemolytic Uremic Syndrome/diagnosis , Atypical Hemolytic Uremic Syndrome/therapy , Autoantibodies , COVID-19/complications , Child , Child, Preschool , Complement Factor H/genetics , Humans , Recurrence , Renal Dialysis , SARS-CoV-2
11.
Rom J Intern Med ; 60(2): 138-142, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1613500

ABSTRACT

The evidence regarding thrombotic microangiopathy (TMA) related to Coronavirus Infectious Disease 2019 (COVID-19) in patients with complement gene mutations as a cause of acute kidney injury (AKI) are limited. We presented the case of a 23-year-old male patient admitted with an asymptomatic form of COVID-19, but with uncontrolled hypertension and AKI. Kidney biopsy showed severe lesions of TMA. In evolution patient had persistent microangiopathic hemolytic anemia, decreased level of haptoglobin and increased LDH level. Decreased complement C3 level and the presence of schistocytes were found for the first time after biopsy. Kidney function progressively decreased and the patient remained hemodialysis dependent. Complement work-up showed a heterozygous variant with unknown significance in complement factor I (CFI) c.-13G>A, affecting the 5' UTR region of the gene. In addition, the patient was found to be heterozygous for the complement factor H (CFH) H3 haplotype (involving the rare alleles of c.-331C>T, Q672Q and E936D polymorphisms) reported as a risk factor of atypical hemolytic uremic syndrome. This case of AKI associated with severe TMA and secondary hemolytic uremic syndrome highlights the importance of genetic risk modifiers in the alternative pathway dysregulation of the complement in the setting of COVID-19, even in asymptomatic forms.


Subject(s)
Acute Kidney Injury , Atypical Hemolytic Uremic Syndrome , COVID-19 , Communicable Diseases , Thrombotic Microangiopathies , Acute Kidney Injury/complications , Adult , Atypical Hemolytic Uremic Syndrome/complications , Atypical Hemolytic Uremic Syndrome/genetics , COVID-19/complications , Communicable Diseases/complications , Humans , Male , Thrombotic Microangiopathies/genetics , Young Adult
12.
Cells ; 10(12)2021 12 18.
Article in English | MEDLINE | ID: covidwho-1580999

ABSTRACT

Atypical hemolytic uremic syndrome (aHUS) is a rare disorder characterized by dysregulation of the alternate pathway. The diagnosis of aHUS is one of exclusion, which complicates its early detection and corresponding intervention to mitigate its high rate of mortality and associated morbidity. Heterozygous mutations in complement regulatory proteins linked to aHUS are not always phenotypically active, and may require a particular trigger for the disease to manifest. This list of triggers continues to expand as more data is aggregated, particularly centered around COVID-19 and pediatric vaccinations. Novel genetic mutations continue to be identified though advancements in technology as well as greater access to cohorts of interest, as in diacylglycerol kinase epsilon (DGKE). DGKE mutations associated with aHUS are the first non-complement regulatory proteins associated with the disease, drastically changing the established framework. Additional markers that are less understood, but continue to be acknowledged, include the unique autoantibodies to complement factor H and complement factor I which are pathogenic drivers in aHUS. Interventional therapeutics have undergone the most advancements, as pharmacokinetic and pharmacodynamic properties are modified as needed in addition to their as biosimilar counterparts. As data continues to be gathered in this field, future advancements will optimally decrease the mortality and morbidity of this disease in children.


Subject(s)
Atypical Hemolytic Uremic Syndrome/genetics , Complement Factor H/genetics , Complement Factor I/genetics , Diacylglycerol Kinase/genetics , Mutation , Atypical Hemolytic Uremic Syndrome/drug therapy , Atypical Hemolytic Uremic Syndrome/immunology , Autoantibodies/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Child , Complement Factor H/immunology , Complement Factor I/immunology , Diacylglycerol Kinase/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology , COVID-19 Drug Treatment
13.
J Med Case Rep ; 15(1): 587, 2021 Dec 13.
Article in English | MEDLINE | ID: covidwho-1571927

ABSTRACT

BACKGROUND: Atypical hemolytic uremic syndrome is an exceedingly rare thrombotic microangiopathy caused by accelerated activation of the alternative complement pathway. CASE PRESENTATION: Here, we report two cases of patients presenting with suspected atypical hemolytic uremic syndrome precipitated by coronavirus disease 2019 infection. The first patient, a 25-year-old Hispanic male, had one prior episode of thrombotic microangiopathy presumed to be atypical hemolytic uremic syndrome precipitated by influenza A, and re-presented with thrombocytopenia, microangiopathic hemolytic anemia, nonoliguric renal failure, and normal ADAMTS13 activity, with confirmed coronavirus disease 2019 positivity. The second patient, a 31-year-old Caucasian female, had no personal history of thrombotic microangiopathy, though reported a family history of suspected atypical hemolytic uremic syndrome. She presented with similar laboratory derangements, oliguric renal failure requiring hemodialysis, and confirmed coronavirus disease 2019 positivity. Both patients were treated with eculizumab with complete resolution of their hematologic and renal complications. CONCLUSION: To our knowledge, this represents the largest case series of atypical hemolytic uremic syndrome precipitated by coronavirus disease 2019 in adults.


Subject(s)
Atypical Hemolytic Uremic Syndrome , COVID-19 , Purpura, Thrombotic Thrombocytopenic , Thrombotic Microangiopathies , Adult , Atypical Hemolytic Uremic Syndrome/diagnosis , Atypical Hemolytic Uremic Syndrome/drug therapy , Female , Humans , Male , SARS-CoV-2
14.
Blood Adv ; 6(3): 866-881, 2022 01 08.
Article in English | MEDLINE | ID: covidwho-1546752

ABSTRACT

Unrestrained activation of the complement system till the terminal products, C5a and C5b-9, plays a pathogenetic role in acute and chronic inflammatory diseases. In endothelial cells, complement hyperactivation may translate into cell dysfunction, favoring thrombus formation. The aim of this study was to investigate the role of the C5a/C5aR1 axis as opposed to C5b-9 in inducing endothelial dysfunction and loss of antithrombogenic properties. In vitro and ex vivo assays with serum from patients with atypical hemolytic uremic syndrome (aHUS), a prototype rare disease of complement-mediated microvascular thrombosis due to genetically determined alternative pathway dysregulation, and cultured microvascular endothelial cells, demonstrated that the C5a/C5aR1 axis is a key player in endothelial thromboresistance loss. C5a added to normal human serum fully recapitulated the prothrombotic effects of aHUS serum. Mechanistic studies showed that C5a caused RalA-mediated exocytosis of von Willebrand factor (vWF) and P-selectin from Weibel-Palade bodies, which favored further vWF binding on the endothelium and platelet adhesion and aggregation. In patients with severe COVID-19 who suffered from acute activation of complement triggered by severe acute respiratory syndrome coronavirus 2 infection, we found the same C5a-dependent pathogenic mechanisms. These results highlight C5a/C5aR1 as a common prothrombogenic effector spanning from genetic rare diseases to viral infections, and it may have clinical implications. Selective C5a/C5aR1 blockade could have advantages over C5 inhibition because the former preserves the formation of C5b-9, which is critical for controlling bacterial infections that often develop as comorbidities in severely ill patients. The ACCESS trial registered at www.clinicaltrials.gov as #NCT02464891 accounts for the results related to aHUS patients treated with CCX168.


Subject(s)
Atypical Hemolytic Uremic Syndrome , COVID-19 , Endothelial Cells , Humans , Platelet Aggregation , SARS-CoV-2
15.
Nephron ; 146(2): 185-189, 2022.
Article in English | MEDLINE | ID: covidwho-1495753

ABSTRACT

Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy (TMA) affecting the kidneys. Compared with typical HUS due to an infection from shiga toxin-producing Escherichia coli, atypical HUS involves a genetic or acquired dysregulation of the complement alternative pathway. In the presence of a mutation in a complement gene, a second trigger is often necessary for the development of the disease. We report a case of a 54-year-old female, with a past medical history of pulmonary tuberculosis, who was admitted to the emergency service with general malaise and reduction in urine output, 5 days after vaccination with ChAdOx1 nCoV-19. Laboratory results revealed microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. Given the clinical picture of TMA, plasma exchange (PEX) was immediately started, along with hemodialysis. Complementary laboratory workup for TMA excluded thrombotic thrombocytopenic purpura and secondary causes. Complement study revealed normal levels of factors H, B, and I, normal activity of the alternate pathway, and absence of anti-factor H antibodies. Genetic study of complement did not show pathogenic variants in the 12 genes analyzed, but revealed a deletion in gene CFHR3/CFHR1 in homozygosity. Our patient completed 10 sessions of PEX, followed by eculizumab, with both clinical and laboratorial improvement. Actually, given the short time lapse between vaccination with ChAdOx1 nCoV-19 and the clinical manifestations, we believe that vaccine was the trigger for the presentation of aHUS in this particular case.


Subject(s)
Atypical Hemolytic Uremic Syndrome/etiology , Blood Proteins/genetics , ChAdOx1 nCoV-19/adverse effects , Complement C3b Inactivator Proteins/genetics , Gene Deletion , Homozygote , Female , Humans , Middle Aged
17.
Front Immunol ; 11: 604759, 2020.
Article in English | MEDLINE | ID: covidwho-1389169

ABSTRACT

Objective: To first describe and estimate the potential pathogenic role of Ig4 autoantibodies in complement-mediated thrombotic microangiopathy (TMA) in a patient with IgG4-related disease (IgG4-RD). Methods: This study is a case report presenting a retrospective review of the patient's medical chart. Plasma complement C3 and C4 levels, immunoglobulin isotypes and subclasses were determined by nephelometry, the complement pathways' activity (CH50, AP50, MBL) using WIESLAB® Complement System assays. Human complement factor H levels, anti-complement factor H auto-antibodies were analyzed by ELISA, using HRP-labeled secondary antibodies specific for human IgG, IgG4, and IgA, respectively. Genetic analyses were performed by exome sequencing of 14 gens implicated in complement disorders, as well as multiplex ligation-dependent probe amplification looking specifically for CFH, CFHR1-2-3, and 5. Results: Our brief report presents the first case of IgG4-RD with complement-mediated TMA originating from both pathogenic CFHR 1 and CFHR 4 genes deletions, and inhibitory anti-complement factor H autoantibodies of the IgG4 subclass. Remission was achieved with plasmaphereses, corticosteroids, and cyclophosphamide. Following remission, the patient was diagnosed with lymphocytic meningitis and SARS-CoV-2 pneumonia with an uneventful recovery. Conclusion: IgG4-RD can be associated with pathogenic IgG4 autoantibodies. Genetic predisposition such as CFHR1 and CFHR4 gene deletions enhance the susceptibility to the formation of inhibitory anti-Factor H IgG4 antibodies.


Subject(s)
Apolipoproteins/genetics , Atypical Hemolytic Uremic Syndrome/genetics , Autoantibodies/immunology , Complement C3b Inactivator Proteins/genetics , Complement Factor H/immunology , Immunoglobulin G4-Related Disease/genetics , Atypical Hemolytic Uremic Syndrome/immunology , Atypical Hemolytic Uremic Syndrome/pathology , Female , Gene Deletion , Genetic Predisposition to Disease/genetics , Humans , Immunoglobulin G/immunology , Immunoglobulin G4-Related Disease/immunology , Immunoglobulin G4-Related Disease/pathology , Middle Aged , Thrombotic Microangiopathies/immunology , Thrombotic Microangiopathies/pathology
19.
J Nephrol ; 35(1): 317-321, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1370413

ABSTRACT

There is a high incidence of acute kidney injury with COVID-19 infections. The etiologies of acute kidney injury could be ischemic acute tubular necrosis or a complex process of complement activation leading to thrombotic microangiopathy. We present a case of 32-year-old Hispanic male with a history of heart transplant, admitted with COVID-19 and atypical hemolytic uremic syndrome, which was successfully treated with Eculizumab.


Subject(s)
Atypical Hemolytic Uremic Syndrome , COVID-19 , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Atypical Hemolytic Uremic Syndrome/diagnosis , Atypical Hemolytic Uremic Syndrome/drug therapy , Humans , Male , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL